IAS-Breeding I ntelligent A gricultural S olutions of Breeding

  • Home
  • Run IAS-Breeding web
  • Downloads R package
  • Downloads C++ software
  • About
English | 中文
Toggle navigation

    IAS Breeding is a software specialized in variance component and breeding value analysis. It includes linear mixed models, machine learning nonlinear models, and Bayesian models. The software provides two analysis platforms: offline software analysis (R language with embedded C++) and online web-based analysis.

    IAS-breeding Advantages:

    Diverse software versions

    Linux C++, R, Shiny web

    Fast computation

    Fast C++ math library

    User friendly

    Interactive web and R package

    Rich in features

    Heritability, Breeding value

    IAS-breeding Features:

    Variance components

    AI-REML

    Genetic parameters

    Heritability, Genetic correlation

    Pedigree BLUP

    Linear mixed models

    Genomic prediction

    LMM, machine learning, Bayesian

    Other tools:

    MPtools

    Molecular phenotypic data processing, filtering, correction, and molecular pedigree construction

    Genomic prediction models

    We present three methods to calculate breeding values: Linear mixed models, Machine learning nonlinear models, and Bayesian models

    Linear mixed model/Best Linear Unbiased Prediction (BLUP)

    For the linear mixed model (LMM): y = Xβ + Zb + e; y is the vector of phenotype value; β the vector of fixed effects, b is the vector of additive genetic effects. Distributions: b ~ N(0,G), e ~ N(0,R), y ~ N(Xβ, V), where V=ZGZ′ + R. Var(G)=Aσ2, where A is the matrix of an additive genetic relationship constructed based on the pedigree (BLUP) or the genomic marker information provided by the SNPs (GBLUP).We can get Mixed Model Equations for β and b using Restricted Maximum Likelihood (REML).

    Bayesian models

    The module is y = Xβ + Zs + e where and s the sum of the vector of SNP effects derived from different assumed distributions. BayesB assumes that most of the genetic markers have zero effect, which can be described as a mixture prior of a scaled t-distribution with probability π and a point mass at 0 with probability 1−π. BayesCπ assumes that SNP effects have a mixture prior of a normal distribution that has mean 0 and variance σ2 with probability π and null effect markers with probability 1−π. BayesN is the nested BayesCπ model, where the SNPs within a 0.2 Mb non-overlapping genomic region are collectively considered as a window. BayesS is similar to BayesCπ but the variance of SNP effects (for SNPs with non-zero effects) is related to MAF (pi) through a parameter S (σi^2=[2pi(1-pi)]^S*σ^2). BayesR assumes that SNP effects follow a mixture of four normal distributions N(0, γk*σk^2), the γk are 0, 0.01, 0.1 and 1 with probability π1, π2, π3 and π4, respectively, and π1+π2+π3+π4=1. The unknown parameters and SNP effects of Bayesian models were obtained from a Gibbs scheme based on the Markov chain Monte Carlo (MCMC) iterations.

    Machine learning

    More about IAS-breeding

    Please contact the author Wentao Cai caiwentao@caas.cn

    The BLUP (linear mixed models) module of IAS-Breeding including four functions: 1.Phenotype summary (Only phenotype used). 2.Pedigree BLUP (Phenoptype + Pedigree). 3.Genomic BLUP/GBLUP (Phenoptype + Genotype). 4.Sigle-step GBLUP/ssGBLUP (Phenoptype + Pedigree + Genotype).

    Upload Phenotype & Pedigree File

    Example
    Example

    Calculation in progress...


    Upload Genotype File

    Example

    Phenotype summary

    Summary table

    Loading...

    Phenotype distribution

    Loading...

    Variance & Heritability

    Variance components

    Loading...

    Heritability

    Loading...

    Breeding values

    Fixed effects

    Loading...

    Breeding values

    Loading...
    Download Breeding Values
    IASbreeding R package
    IASbreeding Manual

    IASbreeding R Package

    IASbreeding V1.1.0 can calculate kinship matrix, variance component analysis using linear mixed model, breeding value using BLUP. The core algorithm of IASbreeding is built using Rcpp and RcppEigen.

    Install IAS-breeding software

    Start an R session using RStudio and run these lines:

    install.packages("IASbreeding_1.1.0.zip", repos = NULL) 
    install.packages("Rcpp","RcppEigen")
    library(IASbreeding)
    library(Rcpp)
    library(RcppEigen)
    

    How to using IAS-breeding software

    • Run pedigree BLUP
    phe_file <- system.file("extdata", "Phenotype.txt", package = "IASbreeding", mustWork = TRUE)
    pheno <- read.table(phe_file,header=TRUE)
    ped_file <- system.file("extdata", "Pedigree.txt", package = "IASbreeding", mustWork = TRUE)
    ped <- read.table(ped_file,header=TRUE)
    newped<-pedcheck(ped)
    A<-Akin(newped)
    Results <- IASBLUP(BW56 ~ 1 + Sex + Condition,random = "ID", kinship = A, max_iter = 20, data = pheno)
    
    • Run GBLUP
    bed_file <- system.file("extdata", "Genotype.bed", package = "IASbreeding", mustWork = TRUE)
    file_prefix <- sub("\\.bed$", "", bed_file)
    Genotype <-read_bed(file_prefix)
    G<-Gkin(Genotype)
    Results <- IASBLUP(BW56 ~ 1 + Sex + Condition,random = "ID", kinship = G, max_iter = 20, data = pheno)
    
    • Run single-step GBLUP
    H<-Hkin(A, G)
    Results <- IASBLUP(BW56 ~ 1 + Sex + Condition,random = "ID", kinship = H, max_iter = 20, data = pheno)
    
    • Please read the instructions for the IAS-Breeding software for detailed usage.
    Windows version
    Linux version
    MacOS version

    IAS-Breeding C++ software

    IASBreeding V1.1.0 can calculate kinship matrix, variance component, breeding value using linear mixed model.

    Installing IAS-Breeding

    You can directly use it after extraction:

    tar -xzvf IASBreeding-1.1.0-Linux-x86_64.tar.gz
    ./IASBreeding
    

    Using IAS-Breeding

    • Build genomic relationship matrix : –kinship

    –kin-method 1: sum[2p(1-p)(VanRaden et al 2008);

    –kin-method 2: Independent 2p(1-p)(Yang et al 2010);

    –kin-method 3: sum[2p(1-p)(Cai et al., 2023)

    --kin-method  1, 2 or 3. Choose a specific method for calculation (Default: --kin-method 1)
    ./IASBreeding --kinship --bedfile Genotype --kin-bin --threads 8 --out output --kin-method 1
    
    --bedfile   Perform calculations using the given genotype (the prefix of PLINK binary genotype file): 
    ./IASBreeding --kinship --bedfile Genotype 
    
    --pedigree   Perform calculations using the given pedigree (the pedigree file with three columns):
    ./IASBreeding --kinship --pedigree Pedigree.txt
    
    --kin-bin   Kinship saved for binary format(if not given, kinship saved for txt format):
    ./IASBreeding --kinship --bedfile Genotype --kin-bin
    
    --threads   Specify the number of threads used (default:1):
    ./IASBreeding --kinship --bedfile Genotype --kin-bin --threads 8
    
    --out   Specify the output prefix (default: Result):
    ./IASBreeding --kinship --bedfile Genotype --kin-bin --threads 8 --out output
    
    --kin-lambda   The power of Indipendent 2p(1-p) or variance (only useful for kin-method 2 or 3, default lambda = 1):
    ./IASBreeding --kinship --bedfile Genotype  --pedigree Pedigree.txt --kin-bin --threads 8 --out output --kin-method 2 --kin-lambda 2
    
    --kin-tau   Scaling factor (tau) for G22 matrix (Default tau=1)
    ./IASBreeding --kinship --bedfile Genotype  --pedigree Pedigree.txt --kin-bin --threads 8 --out output --kin-method 2 --kin-lambda 2 --kin-tau 1.1
    
    --kin-omega   Scaling factor (1-omega) for A22 matrix (Default omega=1)
    ./IASBreeding --kinship --bedfile Genotype  --pedigree Pedigree.txt --kin-bin --threads 8 --out output --kin-method 2 --kin-lambda 2 --kin-tau 2 --kin-omega 0.5
    
    • Variance component analysis using linear mixed model : –reml
    Perform calculations using the given phenotype and kinship (relationship matrix built by --kinship):
    --kin-file   Specify the kinship txt file
    --phefile   Specify the phenotype file
    --phe-pos   Specify the column for phenotype data
    ./IASBreeding --reml --kin-file output.kinship.txt --phefile Phenotype.txt --phe-pos 4
    
    --covar-pos   Specify the columns for covariates, separated by commas:
    ./IASBreeding --reml --kin-file output.kinship.txt --phefile Phenotype.txt --phe-pos 4 --covar-pos 3
    
    --max-iter   Specify the maximum iterations of REML:
    ./IASBreeding --reml --kin-file output.kinship.txt --phefile Phenotype.txt --phe-pos 4 --covar-pos 3 --max-iter 50
    
    • Perform prediction of breeding values : –predict
    Perform calculations using the given phenotype and kinship (relationship matrix built by --kinship):
    --kin-file   Specify the kinship txt file
    --phefile   Specify the phenotype file
    --phe-pos   Specify the column for phenotype data
    ./IASBreeding --predict --kin-file output.kinship.txt --phefile Phenotype.txt --phe-pos 4
    
    --covar-pos   Specify the columns for covariates, separated by commas:
    ./IASBreeding --predict --kin-file output.kinship.txt --phefile Phenotype.txt --phe-pos 4 --covar-pos 3
    
    --max-iter   Specify the maximum iterations of REML:
    ./IASBreeding --predict --kin-file output.kinship.txt --phefile Phenotype.txt --phe-pos 4 --covar-pos 3 --max-iter 50
    
    --out   Specify the output prefix (default: Result):
    ./IASBreeding --predict --kin-file output.kinship.txt --phefile Phenotype.txt --phe-pos 4 --covar-pos 3 --max-iter 50 --out output
    
    • Run BLUP
    ./IASBreeding --kinship --pedigree Pedigree.txt --out output
    ./IASBreeding --predict --kin-file output.kinship.txt --phefile Phenotype.txt --phe-pos 4 --covar-pos 3 --out BLUP_bv
    
    • Run GBLUP
    ./IASBreeding --kinship --bedfile Genotype --out output
    ./IASBreeding --predict --kin-file output.kinship.txt --phefile Phenotype.txt --phe-pos 4 --covar-pos 3 --out GBLUP_bv
    
    • Run single-step GBLUP
    ./IASBreeding --kinship --pedigree Pedigree.txt --bedfile Genotype --out output
    ./IASBreeding --predict --kin-file output.kinship.txt --phefile Phenotype.txt --phe-pos 4 --covar-pos 3 --out SSGBLUP_bv
    

    About IAS-breeding

    This app (IAS-breeding) was built by Wentao Cai(caiwentao@caas.cn). The current release of IAS-breeding contains:

    • Phenotype summary

    • Genetic parameters analysis

    • Calculating breeding values using BLUP, GBLUP


    Use IAS-breeding online

    • The whole app is deveplotment by {shiny}.

    • Data visualisation is mainly done with {ggplot2}

    • IASbreeding shiny web is deployed at http://IASbreeding.cn/ for online use.

    Waterfowl Breeding and Nutrition Innovation Team

    Institute of Animal Sciences

    Chinese Academy of Agricultural University

    Creat by Wentao Cai

      GitHub

      Google Scholar

      ResearchGate

      ORCID

    Copyright © 2024 Wentao Cai, Institute of Animal Sciences, Chinese Academy of Agricultural University